
GROUP ANALYSIS OF THE HEAT-CONDUCTION EQUATION. 

i. INVARIANT SOLUTIONS 

N. M. Tsirel'man UDC 536.24.01 

Invariant solutions of the heat-conduction equation are constructed in terms 
of displacements of the isotherms. 

It is generally known that the application of the algorithms of group analysis to the 
case when the mathematical model leads to a partial differential equation (or a system of 
such equations) gives nontrivial results [1-4]. The problem of interest here is the nonli- 
near heat-conduction equation 

O~ - Ox f (T) , (1 )  

f o r  wh ich  O v s y a n n i k o v  [1] o b t a i n e d  i n v a r i a n t  s o l u t i o n s .  The s u b s t i t u t i o n  T = f c o ( T ) d T  
c o n v e r t s  (1 )  t o  t h e  e q u a t i o n  

co (T) 0r ---- 0x ~x ' (2) 

where co(@) and ~(@)are the heat capacity and thermal conductivity, respectively. When 
we make a change of variables [5] in Eq. (i) to the position x of the isotherms T = const 
(as a function of the time ~), Eq. (1)takes the form 

x~ = [ (T)x~r(x~) -~ - -  [' (T) (XT) -1 .  (3 )  

Equation (3) then describes tlhe unsteady heat conduction in bodies both with and without 
a phase transition in terms of the displacements of the isotherms. 

The function f(T) can be arbitrary, and therefore (i) is a general nonlinear equation. 
However, in (3) the nonlinearity is due to the presence of the factors (XT') -2 and (XT') -I 
and is therefore regular. This facilitates the obtaining of invariant solutions in a series 
of cases. 

Note that for (3) the system of one-parameter subgroups 

a 
X 1  = --O , X2 = __O , X3 :-- 2z __O ' - - x -  (4) 

a t  ox aT ax 

e s t a b l i s h e d  in  [1]  f o r  a r b i t r a r y  f ( T )  c o n t i n u e s  t o  h o l d ,  and t h e r e  i s  t h e  a d d i t i o n a l  o p e r a t o r  

0 0 
X~ = --~-- + ~ (5) 

Ow OT 

for the special case f(T) = exp T. 

The power law f(T) = T 2m (m ; -2/3) gives the additional operator 

a a 
X ~ = m x - -  + T  , (6 )  

Ox OT 

and when m = - 2 / 3  we h a v e  t h e  o p e r a t o r  

X 5 = x ~ ~ - -  3xT  _0_.0_ ( 7 ) 
Ox OT 

We w r i t e  o u t  t h e  i n v a r i a n t  s o l u t i o n s  t o  Eq. ( 3 ) .  

i. The function f(T) is arbitrary; the subgroups Xl, X2, X 3, X l + X2 give the invariant 
solutions 
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x = v (T), x = const, x = ]fl~-v (T), x = z + v (T). ( 8 )  

We h a v e  f ( T )  = e x p  T; u s e  o f  t h e  s u b g r o u p s  X 2 + X~, ~X 3 + X4, X1 + X3 + 2X4 (~  i s  , 

an arbitrary constant) gives the following invariant solutions 

x = T + v ( T  + ln~), x = v l e x p ( T ) ~ l - ~ v  I z v/Civ-1), ( 9 )  

x = v (T - -  2~) exp v. 
i n  a d d i t i o n  t o  t h e  s o l u t i o n s  ( 8 ) .  

3 .  ' The  f u n c t i o n  f ( T )  = T 2m (m * - 2 / 3 ) ;  t h e  s u b g r o u p s  X 1 + X4, xX 3 + X 4,  X 2 - mX 3 + X 4 
lead to the solutions 

x = exp (m~) v IT exp ( - -  T)], x = v (TT -~/ iv)  z cv§ ( 1 0 )  

x = In T + v (x + In "~/2m). 
i n  a d d i t i o n  t o  ( 8 ) .  

4 .  The  f u n c t i o n  f ( T )  = T 4 / a ;  t h e  s u b g r o u p s  X s ,  X= + X s ,  X 3 + X s g i v e  t h e  s o l u t i o n s  

x = T-3v('O, x = T-3v('~ - l/x), x = T-SvI'~'~x/(x + 1)] ( 1 1 )  

i n  a d d i t i o n  t o  t h e  s o l u t i o n s  o b t a i n e d  i n  ( 1 0 )  ( e x c e p t  f o r  t h e  l a s t  o n e ) .  

1.  L e t  f ( T )  be  an  a r b i t r a r y  f u n c t i o n .  Then  t h e  o p e r a t o r  X 1 c o r r e s p o n d s  t o  a / 3 x  a n d  x 
a r e  i n v a r i a n t s .  S u b s t i t u t i n g  a s o l u t i o n  o f  t h e  f o r m  x = v ( T )  i n  ( 3 ) ,  we o b t a i n  

V ( T )  = f (T )  v" ( r )  ( 1 2 )  
v' (T) Iv' (T)I 2 ' 

r U" 

[ v' and S f ( T ) d T  = A v ( T )  -}- B, 

and hence 

(13) 

o r  

H e n c e  i n  t h i s  c a s e  x = v ( T )  c o i n c i d e s  w i t h  t h e  w e l l - k n o w n  s t e a d y  s o l u t i o n .  

2. Let f(T) be an arbitrary function. Then the operator X 2 corresponds to B/3x and the 
invariants are �9 and T. In this case there are no invariant solutions to (3) because there 
are no invariants which are functions of the dependent variable (i.e. x). 

3. Let f(T) be an arbitrary function. The operator X 3 = 2~ 8/~ + x 8/8x generates the 
invariants T and xi/~, and the invariant solution takes the form x = v~-~v(T). With the use 
of (3) we obtain the equation 

v" (T) - -  {f '  (T) v' (T) + v (T) Iv' (T)I~ (T) - O, (.1.4) 

which can be reduced to the form 

(§ , (+) (+) = , V or ----- -- ~ U .  
2 2 

The substitution u = S v(T)dT/v~ leads to the equation 

uu" + [ ( T )  = 0, ( t 5 )  

whose solution can be expanded in a series in T: 

u = ~_i ukTk 
h=O 

2 If we represent f(T) in the form f(T) = ~ fhTk and take into account that u"= (i + I)(i 
k=O i=0 

+ 2)u~+zT t , then upon equating the coefficients of powers of T k to zero we obtain 
k 

Z (i + 1)(i + 2)u~+iuk_~ + f~ = 0. ( 1 6 )  

The recursion relation for the u k has the form 
k--I 

(k + 1)(k + 2) u0uh+~ = [h -- Z (i + 1)(i + 2)uk-iui+2. 
i = 0  

1360 



4. Let f(T) be an arbitrary function; the invariants corresponding to the operator 
X l + X 2 = 8/8T + 8/8x are T and x - z, and the invariant solution is of the form x - ~ = 
v(T). It is not difficult to show that 

x - -  �9 = ~ [[ (T) dT/ (A  - -  T)] § B. (17)  

E q u a t i o n  ( 3 )  i s  i n v a r i a n t  t o  t r a n s l a t i o n s  in  z ,  and t h e r e f o r e  t h e  c o n s t a n t  B can be t a k e n  
t o  be z e r o .  

5.  L e t  f ( T )  be e q u a l  t o  exp T, t h e n  t h e  o p e r a t o r  X 2 + X~ c o r r e s p o n d s  t o  8 /8x  -- ~ 8/8~ + 8 /3z  
and g e n e r a t e s  t h e  i n v a r i a n t s  z exp x ,  ~ exp T, T - x.  The i n v a r i a n t  s o l u t i o n  i s  o b t a i n e d  
in the form 

x - ~ T + v ( x e x p  T)-----T+v (~t), (18) 

and substitution of this relation into (3) gives, upon equating u to v', an Abel equation 
of the first kind 

~2u ' - i - (2~- - l )u - -2~u~--p~u~-] - l - - - -O (19)  

It can be shown that u = -~-z is a particular solution of (19). The substitution u = p-~ + 
~2/z brings (19) to the form 

z '+[ t4 / z - -N- - -O .  (20)  

This is an Abel equation of the second kind which has a whole set of exact solutions, but 
we omit the calculations here as they are complicated. 

An analysis based on the "traditional" equation (i) does not lead to a determination 
of v(~), since it would be necessary to integrate the equation 

v' exp x - -  exp ( x + v )  [ l + 2 v ' ~  exp x +  (v') 2~ exp (2x) + ~ v '  exp x + ~ v  "" exp (2x) ], 

and upon the substitution ~ = z exp x this equation simplifies only slightly: 

v ' =  {1 + 3 ~ v ' + ~  ~ [ (v') ~ + v " ]  } exp v. 

6. Let f(T) be equal to exp T; the operator X~ corresponds to -~ ~/8~ + ~/8T (X = 0), 
the invariants are x and �9 exp T. The invariant solution has the formx = v(~) = v(z exp T), 
and from (3) we obtain the equation 

v " :  (v')~ (2~) 

Letting v' = w, we can reduce (21) to the form w' = w ~ and its solution is w = v' = • [2 
(A - ~)]-m/2 It then follows that 

v . = + ( C - - 2 ~ ) U ~ + B ,  (22)  

or 

or 

x----_+ (C--2x exp T)~I2-k-B, 

T : In [C - -  (x - -  B)~i2v!. 
is invariant to displacements in x, one can put B = 0. Because (8) 

7. Let f(T) be equal to exp T. Then the operator 
O a O 

yX~ + X~ :-:: (2y - -  1 ) ~ --0~ -'r- ?x --Ox + -o-T-  (Y ~ o) 

g e n e r a t e s  t h e  i n v a r i a n t s  xz -X/ (2X - 1 ) ,  e x p ( T ) ~ - l / ( 2 X  - 1 ) .  The i n v a r i a n t  s o l u t i o n  i s  

x =-- v [exp (T) ~-i/c2v-1~] ~v/(2v-l) = v (~) ~v/ov-l) 
The function v(~) satisfies the equation 

v" + [(v') 3 - -  ?v (v')~l~]l(27 - -  1 ) = 0 

and the substitution ~i = ~(v)/(2y - i) brings this to the form 

~ ,~  -- ~ + ~ v ~  = 0, 

and we can obtain the particular solution 

~1 (v) ~ ( 1 -- 2?) v~12. 

The general series solution of (24) is complicated and we do not write it out here. 

8. Let f(T) = T-413; then the operator X 5 corresponds to x 2 8/8x - 3xT 8/8T, and the 
invariants are ~ and xT I/3 The invariant solution has the form x = T-Z/3v(z). With the 
help of (3) we then obtain v' = 0, v = C, and this means that 

(23) 

(24) 
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x T  1/3 = C. (25) 

The solution (25) corresponds to the steady state temperature distribution in a rod. 

9. Let f(T) = T -4/a Then the operator X 2 + X 5 = (i + x 2) 3/ax - 3xT 8/aT generates 
the invariants �9 and (i + xa)T 2/3 and the invariant solution has the form (i + xa)T 2/3 = v(~). 
The substitution v(z) in (3) gives 

V ' =  2~randy 2 =  4~ + C, 

o r  

(1 + x~)2T ~m = 4~ + C. (26) 

Finally we note that in view of the complexity of the calculations of v(~) in the struc- 
ture of the invariant solutions corresponding to some of the operators listed in (4) through 
(7), we do not give all of the results here. However, it was shown in examples 1-9 that the 
kinematic description of the process of unsteady heat conduction in terms of (3) can be 
used to determine the function v(p), which can be a very difficult problem using the "tra- 
ditional" approach based on equation (i). 

Secondly, we note that the invariant solutions obtained here, which are related to the 
intermediate asymptotic solutions of [6-8], contain important information on the behavior 
of the general solutions of boundary-value problems for the nonlinear heat-conduction equa- 
tion, both for the case of fixed boundaries (or moving boundaries with a known form of the 
motion) as well as for the case where the motion of the boundary in time is found from an 
additional condition (the Stefan condition) in the case of a phase transition of the material. 
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FINITE-DIFFERENCE METHOD FOR SOLVING A ONE-DIMENSIONAL 

NONSTATIONARY PROBLEM OF RADIATIVE -CONDUCTIVE HEAT TRANSFER 

Yu. V. Lipovtsev and O. N. Tret'yakova UDC 536.33 

An algorithm and examples of the solution of problems of complex heat trans- 
fer are given. 

In this work, an effective method is offered for solving one-dimensional nonstationary 
boundary-value problems of radiative-conductive heat transfer with the exact equations for 
radiative transfer [i]. In this paper, results are presented on further development of works 
[2, 3], and examples of calculations and comparisons with known results of other authors are 
given. 

We consider a flat layer of an emitting, absorbing, and anisotropically scattering medium 
with optically smooth or diffusely reflecting partially transparent surfaces. Initially, a 
nonuniformly heated layer is placed in the medium, the temperature and the coefficient of heat 
emission of which change according to a given law. Under the condition of azimuthal sym- 
metry, we write the equations of radiative transfer in the form [i] 
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